Saturday 28 October 2017

Moving Average Process Autocorrelation


Autocorrelação do processo de média móvel Este exemplo mostra como introduzir a autocorrelação em um processo de ruído branco por filtragem. Quando introduzimos a autocorrelação em um sinal aleatório, manipulamos seu conteúdo de freqüência. Um filtro de média móvel atenua os componentes de alta freqüência do sinal, efetivamente suavizando-o. Crie a resposta de impulso para um filtro de média móvel de 3 pontos. Filtre uma sequência de ruído branco N (0,1) com o filtro. Defina o gerador de números aleatórios para as configurações padrão para obter resultados reprodutíveis. Obter a auto-correlação de amostra parcial para 20 lags. Traçar a autocorrelação da amostra juntamente com a autocorrelação teórica. A autocorrelação da amostra capta a forma geral da autocorrelação teórica, mesmo que as duas sequências não concordem em detalhe. Neste caso, é claro que o filtro introduziu autocorrelação significativa apenas em relação aos retornos -2,2. O valor absoluto da seqüência decai rapidamente para zero fora desse intervalo. Para verificar que o conteúdo de freqüência foi afetado, traçar Welch estimativas das densidades de potência espectral dos sinais originais e filtrados. O ruído branco foi colorido pelo filtro da média móvel. MATLAB e Simulink são marcas registradas da The MathWorks, Inc. Consulte mathworks / marcas comerciais para obter uma lista de outras marcas comerciais de propriedade da The MathWorks, Inc. Outros produtos ou marcas são marcas comerciais ou marcas registradas de seus respectivos proprietários. Selecione seu país2.1 Modelos de média móvel (modelos MA) Modelos de séries temporais conhecidos como modelos ARIMA podem incluir termos autorregressivos e / ou termos de média móvel. Na Semana 1, aprendemos um termo autorregressivo em um modelo de série temporal para a variável x t é um valor retardado de x t. Por exemplo, um termo autorregressivo de atraso 1 é x t-1 (multiplicado por um coeficiente). Esta lição define termos de média móvel. Um termo de média móvel num modelo de séries temporais é um erro passado (multiplicado por um coeficiente). Vamos (wt overset N (0, sigma2w)), significando que os w t são identicamente, distribuídos independentemente, cada um com uma distribuição normal com média 0 e a mesma variância. O modelo de média móvel da 1ª ordem, denotado por MA (1) é (xt mu wt theta1w) O modelo de média móvel de 2ª ordem, denotado por MA (2) é (xt mu wt theta1w theta2w) , Denotado por MA (q) é (xt mu wt theta1w theta2w pontos thetaqw) Nota. Muitos livros didáticos e programas de software definem o modelo com sinais negativos antes dos termos. Isso não altera as propriedades teóricas gerais do modelo, embora ele inverta os sinais algébricos de valores de coeficientes estimados e de termos (não-quadrados) nas fórmulas para ACFs e variâncias. Você precisa verificar o software para verificar se sinais negativos ou positivos foram utilizados para escrever corretamente o modelo estimado. R usa sinais positivos em seu modelo subjacente, como fazemos aqui. Propriedades Teóricas de uma Série de Tempo com um Modelo MA (1) Observe que o único valor não nulo na ACF teórica é para o atraso 1. Todas as outras autocorrelações são 0. Assim, uma ACF de amostra com uma autocorrelação significativa apenas no intervalo 1 é um indicador de um possível modelo MA (1). Para os estudantes interessados, provas destas propriedades são um apêndice a este folheto. Exemplo 1 Suponha que um modelo MA (1) seja x t 10 w t .7 w t-1. Onde (wt overset N (0,1)). Assim, o coeficiente 1 0,7. O ACF teórico é dado por Um gráfico deste ACF segue. O gráfico apenas mostrado é o ACF teórico para um MA (1) com 1 0,7. Na prática, uma amostra normalmente não proporciona um padrão tão claro. Usando R, simulamos n 100 valores de amostra usando o modelo x t 10 w t .7 w t-1 onde w t iid N (0,1). Para esta simulação, segue-se um gráfico de séries temporais dos dados da amostra. Não podemos dizer muito desse enredo. A ACF de amostra para os dados simulados segue. Observa-se que a amostra ACF não corresponde ao padrão teórico do MA subjacente (1), ou seja, que todas as autocorrelações para os atrasos de 1 serão 0 Uma amostra diferente teria uma ACF de amostra ligeiramente diferente mostrada abaixo, mas provavelmente teria as mesmas características gerais. Propriedades teóricas de uma série temporal com um modelo MA (2) Para o modelo MA (2), as propriedades teóricas são as seguintes: Note que os únicos valores não nulos na ACF teórica são para os retornos 1 e 2. As autocorrelações para atrasos maiores são 0 . Assim, uma ACF de amostra com autocorrelações significativas nos intervalos 1 e 2, mas autocorrelações não significativas para atrasos maiores indica um possível modelo MA (2). Iid N (0,1). Os coeficientes são 1 0,5 e 2 0,3. Como este é um MA (2), o ACF teórico terá valores não nulos apenas nos intervalos 1 e 2. Valores das duas autocorrelações não nulas são Um gráfico do ACF teórico segue. Como quase sempre é o caso, dados de exemplo não vai se comportar tão perfeitamente como a teoria. Foram simulados n 150 valores de amostra para o modelo x t 10 w t .5 w t-1 .3 w t-2. Onde w t iid N (0,1). O gráfico da série de tempo dos dados segue. Como com o gráfico de série de tempo para os dados de amostra de MA (1), você não pode dizer muito dele. A ACF de amostra para os dados simulados segue. O padrão é típico para situações em que um modelo MA (2) pode ser útil. Existem dois picos estatisticamente significativos nos intervalos 1 e 2, seguidos por valores não significativos para outros desfasamentos. Note que devido ao erro de amostragem, o ACF de amostra não corresponde exactamente ao padrão teórico. ACF para modelos MA (q) gerais Uma propriedade dos modelos MA (q) em geral é que existem autocorrelações não nulas para os primeiros q lags e autocorrelações 0 para todos os retornos gt q. Não-unicidade de conexão entre os valores de 1 e (rho1) no modelo MA (1). No modelo MA (1), para qualquer valor de 1. O 1/1 recíproco dá o mesmo valor para Como exemplo, use 0,5 para 1. E então use 1 / (0,5) 2 para 1. Você obterá (rho1) 0,4 em ambas as instâncias. Para satisfazer uma restrição teórica chamada invertibilidade. Nós restringimos os modelos MA (1) para ter valores com valor absoluto menor que 1. No exemplo dado, 1 0,5 será um valor de parâmetro permitido, enquanto que 1 1 / 0,5 2 não. Invertibilidade de modelos MA Um modelo MA é dito ser inversível se for algébrica equivalente a um modelo de ordem infinita convergente. Por convergência, queremos dizer que os coeficientes de AR diminuem para 0 à medida que avançamos no tempo. Invertibilidade é uma restrição programada em séries temporais de software utilizado para estimar os coeficientes de modelos com MA termos. Não é algo que verificamos na análise de dados. Informações adicionais sobre a restrição de invertibilidade para modelos MA (1) são fornecidas no apêndice. Teoria Avançada Nota. Para um modelo MA (q) com um ACF especificado, existe apenas um modelo invertible. A condição necessária para a invertibilidade é que os coeficientes têm valores tais que a equação 1- 1 y-. - q y q 0 tem soluções para y que caem fora do círculo unitário. Código R para os Exemplos No Exemplo 1, traçamos o ACF teórico do modelo x t 10w t. 7w t-1. E depois simularam n 150 valores deste modelo e traçaram a série temporal da amostra e a amostra ACF para os dados simulados. Os comandos R utilizados para traçar o ACF teórico foram: acfma1ARMAacf (mac (0,7), lag. max10) 10 atrasos de ACF para MA (1) com theta1 0,7 lags0: 10 cria uma variável chamada atrasos que varia de 0 a 10. trama (Hg) adiciona um eixo horizontal ao gráfico O primeiro comando determina o ACF e o armazena em um objeto (a0) Chamado acfma1 (nossa escolha de nome). O comando de plotagem (o terceiro comando) traça defasagens em relação aos valores de ACF para os retornos 1 a 10. O parâmetro ylab rotula o eixo y eo parâmetro principal coloca um título no gráfico. Para ver os valores numéricos do ACF basta usar o comando acfma1. A simulação e as parcelas foram feitas com os seguintes comandos. Xcarima. sim (n150, lista (mac (0.7))) Simula n 150 valores de MA (1) xxc10 adiciona 10 para fazer média 10. Padrão de simulação significa 0. plot (x, typeb, mainSimulated MA (1) dados) Acf (x, xlimc (1,10), mainACF para dados de amostras simulados) No Exemplo 2, traçamos o ACF teórico do modelo xt 10 wt. 5 w t-1 .3 w t-2. E depois simularam n 150 valores deste modelo e traçaram a série temporal da amostra e a amostra ACF para os dados simulados. Os comandos R utilizados foram acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 parcela (atrasos, acfma2, xlimc (1,10), ylabr, tipoh, ACF principal para MA (2) com theta1 0,5, (X, typeb, principal série MA (2) simulada) acf (x, xlimc (1,10), x2) MainACF para dados simulados de MA (2) Apêndice: Prova de Propriedades de MA (1) Para estudantes interessados, aqui estão as provas para propriedades teóricas do modelo MA (1). Quando h 1, a expressão anterior 1 w 2. Para qualquer h 2, a expressão anterior 0 (x) é a expressão anterior x (x) A razão é que, por definição de independência do wt. E (w k w j) 0 para qualquer k j. Além disso, porque w t tem média 0, E (w j w j) E (w j 2) w 2. Para uma série de tempo, aplique este resultado para obter o ACF fornecido acima. Um modelo inversível MA é aquele que pode ser escrito como um modelo de ordem infinita AR que converge para que os coeficientes AR convergem para 0 como nos movemos infinitamente no tempo. Bem demonstrar invertibilidade para o modelo MA (1). Em seguida, substituimos a relação (2) para wt-1 na equação (1) (3) (zt wt theta1 (z-theta1w) wt theta1z-theta2w) No tempo t-2. A equação (2) torna-se Então substituimos a relação (4) para wt-2 na equação (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z-theta12z theta31w) Se continuássemos Infinitamente), obteríamos o modelo AR de ordem infinita (zt wt theta1 z - theta21z theta31z - theta41z dots) Observe, no entanto, que se 1 1, os coeficientes multiplicando os desfasamentos de z aumentarão (infinitamente) em tamanho à medida que retrocedermos Tempo. Para evitar isso, precisamos de 1 lt1. Esta é a condição para um modelo MA (1) invertido. Infinite Order MA model Na semana 3, bem ver que um modelo AR (1) pode ser convertido em um modelo de ordem infinita MA: (xt - mu wt phi1w phi21w pontos phik1 w dots sum phij1w) Esta soma de termos de ruído branco passado é conhecido Como a representação causal de um AR (1). Em outras palavras, x t é um tipo especial de MA com um número infinito de termos remontando no tempo. Isso é chamado de ordem infinita MA ou MA (). Uma ordem finita MA é uma ordem infinita AR e qualquer ordem finita AR é uma ordem infinita MA. Lembre-se na Semana 1, observamos que uma exigência para um AR estacionário (1) é que 1 lt1. Vamos calcular o Var (x t) usando a representação causal. Esta última etapa usa um fato básico sobre séries geométricas que requer (phi1lt1) caso contrário, a série diverge. NavigationPurpose: Check Randomness Os gráficos de autocorrelação (Box e Jenkins, pp. 28-32) são uma ferramenta comumente usada para verificar a aleatoriedade em um conjunto de dados. Esta aleatoriedade é determinada por computar autocorrelações para valores de dados em diferentes intervalos de tempo. Se for aleatória, tais autocorrelações devem ser próximas de zero para qualquer e todas as separações de intervalo de tempo. Se não for aleatório, então uma ou mais das autocorrelações serão significativamente não-zero. Além disso, as parcelas de autocorrelação são usadas na fase de identificação do modelo para os modelos auto-regressivos, modelos de séries temporais móveis de Box-Jenkins. Autocorrelação é apenas uma medida de aleatoriedade Observe que não correlacionado não significa necessariamente aleatório. Os dados que possuem autocorrelação significativa não são aleatórios. No entanto, os dados que não mostram autocorrelação significativa ainda podem exibir não-aleatoriedade de outras maneiras. Autocorrelação é apenas uma medida de aleatoriedade. No contexto da validação do modelo (que é o tipo primário de aleatoriedade que discutimos no Manual), a verificação da autocorrelação é tipicamente um teste suficiente de aleatoriedade, uma vez que os resíduos de um modelo de ajuste inadequado tendem a exibir aleatoriedade não sutil. No entanto, algumas aplicações requerem uma determinação mais rigorosa da aleatoriedade. Nestes casos, uma bateria de testes, que podem incluir verificação de autocorrelação, são aplicados desde que os dados podem ser não-aleatórios de muitas maneiras diferentes e muitas vezes sutis. Um exemplo de onde uma verificação mais rigorosa para aleatoriedade é necessária seria testando geradores de números aleatórios. Amostra Plot: autocorrelações devem ser perto de zero para aleatoriedade. Tal não é o caso neste exemplo e, assim, a suposição de aleatoriedade falha. Este gráfico de autocorrelação de amostra mostra que a série de tempo não é aleatória, mas tem um alto grau de autocorrelação entre observações adjacentes e quase adjacentes. Definição: r (h) versus h As parcelas de autocorrelação são formadas por Eixo vertical: Coeficiente de autocorrelação onde C h é a função de autocovariância e C 0 é a função de variância Note que R h está entre -1 e 1. Note que algumas fontes podem usar o Seguinte fórmula para a função autocovariância Embora esta definição tenha menos viés, a formulação (1 / N) tem algumas propriedades estatísticas desejáveis ​​e é a forma mais comumente utilizada na literatura estatística. Consulte as páginas 20 e 49-50 em Chatfield para obter detalhes. Eixo horizontal: Time lag h (h 1, 2, 3.) A linha acima também contém várias linhas de referência horizontais. A linha do meio está em zero. As outras quatro linhas são 95 e 99 faixas de confiança. Observe que existem duas fórmulas distintas para gerar as bandas de confiança. Se o gráfico de autocorrelação estiver sendo usado para testar a aleatoriedade (ou seja, não há dependência temporal nos dados), recomenda-se a seguinte fórmula: onde N é o tamanho da amostra, z é a função de distribuição cumulativa da distribuição normal padrão e (alfa ) É o nível de significância. Neste caso, as bandas de confiança têm uma largura fixa que depende do tamanho da amostra. Esta é a fórmula que foi usada para gerar as faixas de confiança no gráfico acima. Os gráficos de autocorrelação também são usados ​​na fase de identificação do modelo para a montagem de modelos ARIMA. Neste caso, um modelo de média móvel é assumido para os dados e devem ser geradas as seguintes faixas de confiança: onde k é o atraso, N é o tamanho da amostra, z é a função de distribuição cumulativa da distribuição normal padrão e (alfa) é O nível de significância. Neste caso, as faixas de confiança aumentam à medida que o atraso aumenta. O gráfico de autocorrelação pode fornecer respostas para as seguintes perguntas: Os dados são aleatórios É uma observação relacionada a uma observação adjacente É uma observação relacionada a uma observação duas vezes removido (etc.) É a série de tempo observada ruído branco A série temporal observada é sinusoidal As séries temporais observadas são autorregressivas O que é um modelo apropriado para as séries temporais observadas O modelo é válido e suficiente A fórmula ss / sqrt é válida Importância: Garanta a validade das conclusões de engenharia Aleatoriedade (juntamente com modelo fixo, variação fixa e distribuição fixa) É uma das quatro suposições que tipicamente estão subjacentes a todos os processos de medição. A hipótese de aleatoriedade é extremamente importante pelas três razões a seguir: A maioria dos testes estatísticos padrão depende da aleatoriedade. A validade das conclusões do teste está diretamente ligada à validade do pressuposto aleatório. Muitas fórmulas estatísticas comumente usadas dependem da suposição aleatória, sendo a fórmula mais comum a fórmula para determinar o desvio padrão da média da amostra: onde s é o desvio padrão dos dados. Embora fortemente usados, os resultados de usar esta fórmula são de nenhum valor a menos que a suposição de aleatoriedade se mantenha. Para dados univariados, o modelo padrão é Se os dados não são aleatórios, este modelo é incorreto e inválido, e as estimativas para os parâmetros (como a constante) tornam-se absurdas e inválidas. Em suma, se o analista não verificar a aleatoriedade, então a validade de muitas das conclusões estatísticas torna-se suspeito. O gráfico de autocorrelação é uma excelente maneira de verificar essa aleatoriedade.

No comments:

Post a Comment